Interactive mandalas
Just touch it !
Templates 
7
Generative Mandalas 
13
Index 
36
[en] Howto
[de] Anweisung
[fr] Instructions
Interactive mandalas
Templates [en]
Generative Mandalas [en]
Index [en]
JavaZ goes mandalas. [en]
JavaZ wird Mandalas. [de]
JavaZ va aux mandalas. [fr]
Templates
Templates
Coska-a
$$$ \left \{ \begin{array}{r c l} \theta(\alpha)& = &\cos^{k_{a}}{(\alpha)} \\ r(\alpha)& = &0.24\times\sin{\alpha} \end{array}\right .$$$
Coskakabé
$$$r(\alpha)=0.25\times\cos{\left (\cos^{k_{a}}{(k_{b}\cdot\alpha)}\right )}$$$
Coskakacé
$$$r(\alpha)=0.25\times\cos{\left (\cos^{k_{a}}{(k_{b}\cdot\alpha)}\right )}$$$
Coskakadé
$$$r(\alpha)=0.25\times\cos{\left (\cos^{k_{a}}{(k_{b}\cdot\alpha)}\right )}$$$
Coskakahé
$$$r(\alpha)=0.25\times\cos{\left (\cos^{k_{a}}{(k_{b}\cdot\alpha)}\right )}$$$
Ka
$$$r(\alpha)=k_{a}$$$
Cosapisin
$$$ \theta(\alpha) = \cos{(\alpha)}+\pi\cdot\sin{(\alpha)}$$$
Generative Mandalas
Generative Mandalas
GenManda 01
GenManda 02
GenManda 03
GenManda 04
GenManda 05
GenManda 06
GenManda 07
GenManda 08
GenManda 09
GenManda 10
GenManda 11
GenManda 12
GenManda 13
Index
Index
M 000
$$$r(\alpha)=k_{a}\times\left(1+cos^2{(2\cdot\alpha)}\right)$$$
M 001
$$$\theta(\alpha)=0.2\times\tan{(0.1+k_{a}\cdot\alpha)}$$$ | $$$r(\alpha)=0.2\times\cos{(\alpha)}+\frac{t}{3}$$$
M 002
$$$r(\alpha)=0.1\times\cos^2{(k_{a}\cdot\alpha)}-k_{b}$$$
M 003
$$$r(\alpha)=0.2\times\left (\sin^2{(-0.4\cdot\alpha)}+\cos^2{(0.8+k_{a}\cdot\,k_{b}\cdot\alpha)}\right )$$$
M 004
$$$r(\alpha)=\cos^{k_{b}}{(1.4\cdot\alpha)}+k_{a}\times\sin^{k_{b}}{(2.8\cdot\alpha)}$$$
M 005
$$$r(\alpha)=k_{a}\times\left(\cos^2{(2.5\cdot\alpha)}-1.5\right)$$$
M 006
$$$r(\alpha)=0.8\times\left (\cos^2{(k_{a}\cdot\alpha)}-k_{b}\right )$$$
M 007
$$$r(\alpha)=k_{a}\times\left (\cos^{20}{(k_{b}\cdot\alpha)}-1\right )$$$
M 008
$$$r(\alpha)=k_{a}\times\left (\cos^{k_{b}}{(2.5\cdot\alpha)}-1.5\right )$$$
M 009
$$$r(\alpha)=0.1\times\left (\cos{\alpha}-k_{a}\right )$$$
M 010
$$$r(\alpha)=k_{a}\times\left (\sin^{0.4}{(\frac{\alpha}{2})}-\frac{4}{3.5}\right )$$$
M 011
$$$r(\alpha)=0.25\times\left (\sin^2{(0.5\cdot\alpha)}\right )$$$
M 012
$$$r(\alpha)=0.25\times\left (\sin^2{(0.5\cdot\alpha)}\right )$$$
M 013
$$$r(\alpha)=k_{a}\times\sin^{0.4}{(\frac{\alpha}{2})}-k_{b}$$$
M 014
$$$r(\alpha)=0.24\times\sin{(\frac{k_{a}}{k_{b}}\cdot\alpha)}$$$
M 015
$$$r(\alpha)=0.49\times\sin{(\frac{k_{a}}{k_{b}}\cdot\alpha)}$$$
M 016
$$$r(\alpha)=k_{a}\times\left (\cos^{20}{(k_{b}\cdot\alpha)}-1\right )$$$
M 017
$$$ \left \{ \begin{array}{r c l} \theta(\alpha)& = &\cos{(\alpha)}+\pi\cdot\sin{(\alpha)}+\frac{t}{2} \\ r(\alpha)& = &k_{a}\times\frac{\alpha}{50} \end{array}\right .$$$
M 018
$$$r(\alpha)=k_{a}\times\left (\cos^{20}{(k_{b}\cdot\alpha)}-1\right )$$$
M 019
$$$r(\alpha)=0.1\times\left (\sin^{0.4}{(-2.5\cdot\alpha)}-1.4\right )$$$
M 020
$$$ \left \{ \begin{array}{r c l} \theta(\alpha)& = &\cos^{k_{a}}{(\alpha+k_{b}+t)} \\ r(\alpha)& = &0.23\times\sin{\alpha} \end{array}\right .$$$
M 021
$$$ \left \{ \begin{array}{r c l} \theta(\alpha)& = &\cos^{k_{a}}{(\alpha)} \\ r(\alpha)& = &0.24\times\sin{\alpha} \end{array}\right .$$$
M 022
$$$ \left \{ \begin{array}{r c l} \theta(\alpha)& = &\cos{(k_{a}\cdot\alpha)} \\ r(\alpha)& = &0.24\times\sin{\alpha} \end{array}\right .$$$
M 023
$$$ \left \{ \begin{array}{r c l} \theta(\alpha)& = &\cos^5{(k_{a}\cdot\alpha)} \\ r(\alpha)& = &0.24\times\sin^3{(4\cdot\alpha)} \end{array}\right .$$$
M 024
$$$ \left \{ \begin{array}{r c l} \theta(\alpha)& = &\cos^5{(k_{a}\cdot\alpha)} \\ r(\alpha)& = &0.24\times\sin{\alpha} \end{array}\right .$$$
M 025
$$$ \left \{ \begin{array}{r c l} \theta(\alpha)& = &\cos{(k_{a}+\alpha)} \\ r(\alpha)& = &0.2\times\sin{\alpha}+k_{b} \end{array}\right .$$$
M 026
$$$ \left \{ \begin{array}{r c l} \theta(\alpha)& = &(k_{a}\times\alpha) \\ r(\alpha)& = &0.24\times\cos{(k_{b}\cdot\alpha)} \end{array}\right .$$$
M 027
$$$ \left \{ \begin{array}{r c l} \theta(\alpha)& = &0.2\times\sin{(k_{a}\cdot\alpha)} \\ r(\alpha)& = &0.48\times\cos{(2\cdot\alpha)} \end{array}\right .$$$
M 028
$$$ \left \{ \begin{array}{r c l} \theta(\alpha)& = &k_{a}\times\sin{(k_{b}\cdot\alpha+k_{c})} \\ r(\alpha)& = &\frac{k_{a}}{4}\times\cos{\alpha} \end{array}\right .$$$
M 029
$$$r(\alpha)=0.1\times\cos^2{(k_{a}\cdot\alpha)}-k_{b}$$$
M 030
$$$r(\alpha)=k_{a}\times\sin{(\frac{\alpha}{3})}$$$
M 031
$$$r(\alpha)=0.29\times\cos{\left (k_{a}\cdot\cos{\alpha}\times\sin{(k_{a}\cdot \cos{\alpha})}\right )}$$$
M 032
$$$r(\alpha)=0.25\times\cos{\left (k_{a}\cdot\cos{2\cdot\alpha}\times\sin{(k_{a}\cdot \sin{\alpha})}\right )}$$$
M 033
$$$r(\alpha)=0.25\times\cos{\left (\cos^{k_{a}}{(k_{b}\cdot\alpha)}\right )}$$$
M 034
$$$ \left \{ \begin{array}{r c l} \theta(\alpha)& = &\cos{(\alpha)}+\pi\cdot\sin{(\alpha)} \\ r(\alpha)& = &0.24\times\cos{(k_{a}\cdot\alpha)} \end{array}\right .$$$
M 035
$$$r(\alpha) = k_{a}\times\left(\cos^{0.64}{(\frac{\alpha}{2})}-\frac{4}{3,86}\right).$$$
JavaZ goes mandalas.
JavaZ goes mandalas.
Interactive Mandalas
Create and upload your own mandalas.
JavaZ wird Mandalas.
JavaZ wird Mandalas.
Interaktive Mandalas
Eigenen Mandalas erstellen und hochladen.
JavaZ va aux mandalas.
JavaZ va aux mandalas.
Mandalas interactifs
Créer et télécharger vos propres mandalas.
www
www
Disclaimer
Terms and conditions
Cookie policy