Coska-a

$$$ \left \{ \begin{array}{r c l} \theta(\alpha)& = &\cos^{k_{a}}{(\alpha)} \\ r(\alpha)& = &0.24\times\sin{\alpha} \end{array}\right .$$$

Coskakabé

$$$r(\alpha)=0.25\times\cos{\left (\cos^{k_{a}}{(k_{b}\cdot\alpha)}\right )}$$$

Coskakacé

$$$r(\alpha)=0.25\times\cos{\left (\cos^{k_{a}}{(k_{b}\cdot\alpha)}\right )}$$$

Coskakadé

$$$r(\alpha)=0.25\times\cos{\left (\cos^{k_{a}}{(k_{b}\cdot\alpha)}\right )}$$$

Coskakahé

$$$r(\alpha)=0.25\times\cos{\left (\cos^{k_{a}}{(k_{b}\cdot\alpha)}\right )}$$$

Ka

$$$r(\alpha)=k_{a}$$$

Cosapisin

$$$ \theta(\alpha) = \cos{(\alpha)}+\pi\cdot\sin{(\alpha)}$$$

M 000

$$$r(\alpha)=k_{a}\times\left(1+cos^2{(2\cdot\alpha)}\right)$$$

M 001

$$$\theta(\alpha)=0.2\times\tan{(0.1+k_{a}\cdot\alpha)}$$$ | $$$r(\alpha)=0.2\times\cos{(\alpha)}+\frac{t}{3}$$$

M 002

$$$r(\alpha)=0.1\times\cos^2{(k_{a}\cdot\alpha)}-k_{b}$$$

M 003

$$$r(\alpha)=0.2\times\left (\sin^2{(-0.4\cdot\alpha)}+\cos^2{(0.8+k_{a}\cdot\,k_{b}\cdot\alpha)}\right )$$$

M 004

$$$r(\alpha)=\cos^{k_{b}}{(1.4\cdot\alpha)}+k_{a}\times\sin^{k_{b}}{(2.8\cdot\alpha)}$$$

M 005

$$$r(\alpha)=k_{a}\times\left(\cos^2{(2.5\cdot\alpha)}-1.5\right)$$$

M 006

$$$r(\alpha)=0.8\times\left (\cos^2{(k_{a}\cdot\alpha)}-k_{b}\right )$$$

M 007

$$$r(\alpha)=k_{a}\times\left (\cos^{20}{(k_{b}\cdot\alpha)}-1\right )$$$

M 008

$$$r(\alpha)=k_{a}\times\left (\cos^{k_{b}}{(2.5\cdot\alpha)}-1.5\right )$$$

M 009

$$$r(\alpha)=0.1\times\left (\cos{\alpha}-k_{a}\right )$$$

M 010

$$$r(\alpha)=k_{a}\times\left (\sin^{0.4}{(\frac{\alpha}{2})}-\frac{4}{3.5}\right )$$$

M 011

$$$r(\alpha)=0.25\times\left (\sin^2{(0.5\cdot\alpha)}\right )$$$

M 012

$$$r(\alpha)=0.25\times\left (\sin^2{(0.5\cdot\alpha)}\right )$$$

M 013

$$$r(\alpha)=k_{a}\times\sin^{0.4}{(\frac{\alpha}{2})}-k_{b}$$$

M 014

$$$r(\alpha)=0.24\times\sin{(\frac{k_{a}}{k_{b}}\cdot\alpha)}$$$

M 015

$$$r(\alpha)=0.49\times\sin{(\frac{k_{a}}{k_{b}}\cdot\alpha)}$$$

M 016

$$$r(\alpha)=k_{a}\times\left (\cos^{20}{(k_{b}\cdot\alpha)}-1\right )$$$

M 017

$$$ \left \{ \begin{array}{r c l} \theta(\alpha)& = &\cos{(\alpha)}+\pi\cdot\sin{(\alpha)}+\frac{t}{2} \\ r(\alpha)& = &k_{a}\times\frac{\alpha}{50} \end{array}\right .$$$

M 018

$$$r(\alpha)=k_{a}\times\left (\cos^{20}{(k_{b}\cdot\alpha)}-1\right )$$$

M 019

$$$r(\alpha)=0.1\times\left (\sin^{0.4}{(-2.5\cdot\alpha)}-1.4\right )$$$

M 020

$$$ \left \{ \begin{array}{r c l} \theta(\alpha)& = &\cos^{k_{a}}{(\alpha+k_{b}+t)} \\ r(\alpha)& = &0.23\times\sin{\alpha} \end{array}\right .$$$

M 021

$$$ \left \{ \begin{array}{r c l} \theta(\alpha)& = &\cos^{k_{a}}{(\alpha)} \\ r(\alpha)& = &0.24\times\sin{\alpha} \end{array}\right .$$$

M 022

$$$ \left \{ \begin{array}{r c l} \theta(\alpha)& = &\cos{(k_{a}\cdot\alpha)} \\ r(\alpha)& = &0.24\times\sin{\alpha} \end{array}\right .$$$

M 023

$$$ \left \{ \begin{array}{r c l} \theta(\alpha)& = &\cos^5{(k_{a}\cdot\alpha)} \\ r(\alpha)& = &0.24\times\sin^3{(4\cdot\alpha)} \end{array}\right .$$$

M 024

$$$ \left \{ \begin{array}{r c l} \theta(\alpha)& = &\cos^5{(k_{a}\cdot\alpha)} \\ r(\alpha)& = &0.24\times\sin{\alpha} \end{array}\right .$$$

M 025

$$$ \left \{ \begin{array}{r c l} \theta(\alpha)& = &\cos{(k_{a}+\alpha)} \\ r(\alpha)& = &0.2\times\sin{\alpha}+k_{b} \end{array}\right .$$$

M 026

$$$ \left \{ \begin{array}{r c l} \theta(\alpha)& = &(k_{a}\times\alpha) \\ r(\alpha)& = &0.24\times\cos{(k_{b}\cdot\alpha)} \end{array}\right .$$$

M 027

$$$ \left \{ \begin{array}{r c l} \theta(\alpha)& = &0.2\times\sin{(k_{a}\cdot\alpha)} \\ r(\alpha)& = &0.48\times\cos{(2\cdot\alpha)} \end{array}\right .$$$

M 028

$$$ \left \{ \begin{array}{r c l} \theta(\alpha)& = &k_{a}\times\sin{(k_{b}\cdot\alpha+k_{c})} \\ r(\alpha)& = &\frac{k_{a}}{4}\times\cos{\alpha} \end{array}\right .$$$

M 029

$$$r(\alpha)=0.1\times\cos^2{(k_{a}\cdot\alpha)}-k_{b}$$$

M 030

$$$r(\alpha)=k_{a}\times\sin{(\frac{\alpha}{3})}$$$

M 031

$$$r(\alpha)=0.29\times\cos{\left (k_{a}\cdot\cos{\alpha}\times\sin{(k_{a}\cdot \cos{\alpha})}\right )}$$$

M 032

$$$r(\alpha)=0.25\times\cos{\left (k_{a}\cdot\cos{2\cdot\alpha}\times\sin{(k_{a}\cdot \sin{\alpha})}\right )}$$$

M 033

$$$r(\alpha)=0.25\times\cos{\left (\cos^{k_{a}}{(k_{b}\cdot\alpha)}\right )}$$$

M 034

$$$ \left \{ \begin{array}{r c l} \theta(\alpha)& = &\cos{(\alpha)}+\pi\cdot\sin{(\alpha)} \\ r(\alpha)& = &0.24\times\cos{(k_{a}\cdot\alpha)} \end{array}\right .$$$

M 035

$$$r(\alpha) = k_{a}\times\left(\cos^{0.64}{(\frac{\alpha}{2})}-\frac{4}{3,86}\right).$$$

Interactive Mandalas

Create and upload your own mandalas.

Interaktive Mandalas

Eigenen Mandalas erstellen und hochladen.

Mandalas interactifs

Créer et télécharger vos propres mandalas.