Coska-a

$$$ \left \{ \begin{array}{r c l} \theta(\alpha)& = &\cos^{k_{a}}{(\alpha)} \\ r(\alpha)& = &0.24\times\sin{\alpha} \end{array}\right .$$$

Coskakabé

$$$r(\alpha)=0.25\times\cos{\left (\cos^{k_{a}}{(k_{b}\cdot\alpha)}\right )}$$$

Coskakacé

$$$r(\alpha)=0.25\times\cos{\left (\cos^{k_{a}}{(k_{b}\cdot\alpha)}\right )}$$$

Coskakadé

$$$r(\alpha)=0.25\times\cos{\left (\cos^{k_{a}}{(k_{b}\cdot\alpha)}\right )}$$$

Coskakahé

$$$r(\alpha)=0.25\times\cos{\left (\cos^{k_{a}}{(k_{b}\cdot\alpha)}\right )}$$$

Ka

$$$r(\alpha)=k_{a}$$$

Cosapisin

$$$ \theta(\alpha) = \cos{(\alpha)}+\pi\cdot\sin{(\alpha)}$$$